
REGULARIZATION OF MIXED 
SECOND-ORDER ELLIPTIC PROBLEMS 

BY 

ELIAHU SHAMIR 

ABSTRACT 

It is shown that weak solutions of mixed elliptic problems are H61der con- 
tinuous of any order less than I/2 and that they possess higher regularity in 
non-critical directions. 

0. Introduction and statement of results. The regularization principle for 
elliptic equations and boundary value problems roughly states that weak solutions 
are strong and strong solutions are as smooth as the coefficients of the operators, 
the domain and the data allow. For example, if A is a linear elliptic operator of 
order m, A* its formal adjoint and u e LP(f~) satisfies fuA*~dx = ff~dx for all 
tk e C~(f~) with fe.  LP(f~), then u has generalized derivatives up to order m in 
LP(tT), f~' a compact subdomain of f~. Similar (but deeper) results establish 
strong differentiability up to the boundary of weak solutions of boundary value 
problems. We mention in particular the works of Agmon [1], Lions-Magenes [6] 
Schechter [10] and the exposition of Magenes [8]. The regularity principle is 
known to be valid for local solutions, and this is the approach of [1]. In [6, 10] 
the treatment is global. Another feature of these works is that, rather than posing 
the problems in a weak form (as in the example above), the operators are extended 
(by duality and interpolation) to mappings between suitable function or distri- 
bution spaces in f~ or 8f). The regularization is carried out in this framework, 
and usually appears as invertibility of~ the extended mappings. This method 
requires the development of a rather heavy machinery of distribution spaces 
and their trace (boundary) behaviour. This is, however, a natural functional- 
analytic approach to boundary value problems and in addition there is an 
interplay between the theory of elliptic problems and the abstract properties of 
the distribution spaces. 

In this article we regularize (very) weak solutions of mixed second order real 
elliptic problems (in any dimension). Thus our solutions satisfy a boundary 
condition which breaks across a smooth (n-1)-dimensional submanifold F of 
~f~ (which is smooth and n-dimensional). Due to the local character of the known 
regularity results, only the behaviour near points of F has to be studied. We shall 
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use a global approach to prove invertibility (in suitable spaces) of certain cano- 
nical mixed problems where A = - A + 6 2 , the boundary operators are Dirichlet 
(the trace) and constant oblique derivatives, the domain is the half space 
gn+ 1 + = { ( t , y , x ' ) l t >  0)} and the break manifold F is the plane t =0 ,  y =0.  
But in proving regularity for general mixed problems, in particular partial regu- 
larity in directions parallel to F, we also use local methods close to Agmon's [1]. 

There is an upper limit to the total regularity one can expect for mixed problems. 
This is seen in the following example. Let u(t, y) = Im(y + it) ~ in the half plane 
t > 0. It is harmonic there and 

du 
lim u(t,y) = 0 ,  y > 0 ;  lim ~ - ( t , y )  - - 0 ,  y < O .  
t--*0 t~O 

The data of  this mixed Dirichlet-Neumann problem is as smooth as one can 
wish--identically zero. Still, H61der continuity of order ½ is the most one can 
get here. 

Our results are summarized as follows. Let A be a real elliptic operator in 
f~ c R "+~ . Let the (real) boundary operator "cover"  A at each point of t3~. 
Assume that the coefficients of the operators, df~ and F (the break manifold) 
are smooth (C 3 is enough), and let the data (for a nonhomogeneous problem) 
be reasonably smooth. Let u ~ L  ~, p > 4  or let u e H  1"~, q > 1 be a weak local 
solution of the mixed problem near X o e F.  Then u is (near Xo) in the space 
H ~'p for every s < ½ + 2 (hence if p is large enough u is ~-H~51der continuous, 
for any ~ < ½). Moreover, u has partial regularity in directions parallel to F, 
i.e., first derivatives of u in such directions belong to L p. These are 
the directions orthogonal to t and y after a neighborhood of X0 in fl is trans- 
formed on a half-spherical neighborhood of the origin {X =(t,y,x')]t~.>O, 
[X[ < 6} and the break manifold goes over to the plane t = 0, y = 0. 

Higher regularity in the directions parallel to F is obtained if the operator 
have constant coefficients. We believe this is true in general and the barrier of 
regularization exists only in the two "critical" directions. In these two directions 
one can regularize u up to order ½ - e in terms of H61der continuity. Thus our 
results are optimal---except for the possibility that the ~ can be dropped, but 
this is not likely. 

H61der continuity at some order ~ (which is difficult to estimate) for solutions 
in H x'z also follows from general results of Stampacchia [14] about elliptic 
problems with various discontinuities. Continuity for some special, mixed boun- 
dary problems was obtained by Fichera [4]. The general method of Stampacchia 
[14] is closer to potential theory. Our methods are specialized to mixed problems, 
and essentially use reduction to pure elliptic problems. The singular integral 
equations involved in this reduction were studied in [13] (see Footnote in Section 
3), even for the vectorial case which arises in the treatment of higher order mixed 
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problems. Some of these problems are amenable (albeit technical difficulties) 
to our method of regularization. 

The plan of the paper is the following: 

1. Notations, spaces of functions and distributions. 
2. Pure problems for - A  + 32 in a half space. 
3. Mixed problems for - A  + 32 in a half space. 
4. Perturbed problems and local fundamental solution. 
5. Regularity in the general case. 

I am indebted to Professor S. Agmon for useful conversations concerning 
this paper. 

1. Notations, spaces of functions and distributions. Let x = ( x l , . . . , x ~ )  re- 
present a point in Rn, ~ =(~l, '" ,~n) a point in the dual space. We also use the 
notation x l  = y ,  x = ( y , x ' ) ,  ~j = ~1, ~ = 01,~'),  R~  = {(y,x')]y > 0} and 
R ~ _ = {(y,x')l y < 0}. The spaces Ck(D), C~°(f~) have their customary meaning. 
Let  H ~'p = H~'e(R ~) be the space of distributions u for which 

(1.1) llu II., ---liE-l(1 < co, 

here (Fu)(O = fu(x)eW~dx is the Fourier transform. We assume I < p < oo. 
For an integer /c ~ 0, H k'p consists of all functions with distribution derivatives 
up to order/c belonging to L p. Alternatively, H ',p is obtained as the closure of 
C~(R') under the norm (1.1). For basic properties of the spaces H ~'p (and 
W ~'p used later) we refer the reader to [6, 7, 8, I0]. We describe here some pro- 
potties which are particularly relevant later. 

Let ~2 be a domain, [~ its closure. We set 

(1.2) HaP = {u e H ~'p [ support u _ ~}. 

For fl = R~. + 1, the space (1.2) is denoted H~ 'p. If a• is smooth, non self-inter- 
secting (as we shall always assume), t-/~'v is the closure of C~°([I) in H *'v. Let  --~ 

(1.3) H"v(D) = HS'V/H~i p, , ~ '  is the closed complement  of  f l .  

This is the space of all restrictions of u e H ''p to fl, equipped with the quotient 
norm. For f~ = R~ ,  Y+: H~'V~ H"V(R~) is the projection onto the quotient 
space, and ][ Y~u I]~,v denotes the quotient form. Thus Y+u is the class u - H~ p, 
and is represented by u or any other element in this class. For s = 0 we can identify 
LP(R~) with L~ and Y+ with multiplication by the characteristic function of 
R~:. This is actually true for - 1  + 1/p < s < l ip  (see Remark 1.5). For real r let 

(1.4) J~ = F- I(I~2 ÷ I ~ 12)r/2"F' (~ > 0. 

Then for each II II" is a norm equivalent to II II,, (equal if = I) More 
generally, J~ maps H ~'v onto H '-''v. Let 
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(1.5) J~:,a = F-l i t /_+ i(1¢'12 + 62)~]'F. 

(Usually we omit the subscript 6.) Both operators are invertible, and map 
H " '  onto U s- ' ' '  so the norms II Jg,," II,p are again equivalent to II u II,,,- How- 
ever J'_ also maps H~ p onto H'_ -r'p, because the factor within brackets in (1.5) 
is analytic for Im t/< 0. Hence J'_.(u + H~ n) = J'_.u + H U  "p, i.e. J'._ Y+u = Y+J'_ u. 
J~. acts in the dual fashion (in particular J~_ and Y_ commute) and we have the 
norm relations 

(1.6) IlY ulls.p~ IIY s ulls-,.,( ~ II Y J ull , if  s = r ) .  

A differentiation of order k maps H s'p into H s-k'p and since it preserves sup- 
ports, it acts similarly in Ha'~ HS'P(t)). Multiplication by a function of Ck(fl) 
also preserves supports and maps HS'P(fl) into itself if Is I < k. For s < 0, this 
follows from the reflexitivity of our spaces, the conjugate spaces being 

(1.7) (HS'9 ' = H-s'P'; (HS'P(f~)) ' = H -s'p' , 1/p + 1/p' = 1. 

LF.~tA 1.1 [11, 13]. The map u --} (Y_u, Y+u) of HS'Pinto Hs'P(RL) x Hs'P(R~) 
is invertible i f  and only i f  - 1 + 1/p < s < 1/p. I f  s > 1/p but s - l ip  is not an 
integer, then the map is 1-1 and has a closed range. 

We consider a more general operator, with domain and range as above 

(1.8) ~-I: u --+(Y_u, Y+F- IM(OFu) .  

We assume that M = F - I M ( O F  is bounded and invertible in H ''p. Expressing 
the norms in Hs'P(R~:) by means of L p norms, using (1.6), it is shown [13, Theo- 
rem 6.1] that 

LEbIMA 1.2. ~ is invertible (1-1, onto, e tc . ) for  (s,p) i f  and only i f  2~I, is 
invertible (1-1, onto, e tc . ) for  (0,p) where ]~r s is associated with the factor 

i(1¢'1 
(1.9) M,(O = M(¢) \n + i(l ~' [2 + ~2)~ ] ,  ~ > 0 fixed. 

This in turn is equivalent to the operator 

(1.10) Y+v ~ Y+F-1M~(OFY+v acting in LP(R*+) 

being invertible (1-1, onto, etc.). 

To describe traces of  Hs'P(f~) in dfl, we need the spaces W s'p (which 
coincide with H s'p for integral s). There are several equivalent definitions, and 
we refer the reader to the literature (e.g. [6!, [7], [8], [15"!). The spaces 
W.~ 'p, W~'P(R~), Wa'P, WS'P(f~), and the maps Y+ are defined as in the H "l' case. 
The relations (1.7) serve as definitions of the spaces for negative s. Differentia- 
tions and multiplications (in general, linear partial differential operators) 
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again act in the same way, and so do J ' ,  J~  but only if r is an integer. Lemma 

1.1 is also valid [6, IV]. We shall use II II Ik, etc. to denote W norms 
as well, usually for functions denoted by Greek letters, but no ambiguity should 
arise, especially as W ~'p norms will be used for traces on 0f~ or R ~ 30,  + 1 = ,,,,+ , and 

H ~'p norms will be used in ~ or R~_ + ~. 
REMARK 1.3. The reduction of [[ Y±u I1 ,, to L' norms in (1.6) is not true 

any more for W ~'p, unless s is an integer. But the following is still true: 
If  the operator (1.8) is invertible in the H ~'p scale for sl < s < s2, then it is 

invertible in the W ~'p scale for s~ < s < ss. This follows from the fact that 

W ~'p is obtainable from H ~'p and H ~''~ by interpolation [7]. 

THEOREM 1.4 (The trace theorem). Let k > j >= O. Then 

defined originally for  C k functions, extends to a bounded map 

(1.11) ~j: HR+O,p(R~++ 1) onto W R-J+°-I/p'p(R"), 

0 is always assumed to satisfy - 1 + 1/p < 0 < 1/p. ~o is also denoted by ~ and 
called the trace operator. The same result holds for W k+°'p instead of H k+°'~' 
(the trace space is the same in both cases). I f  t) has a smooth boundary the 
traces of the normal derivatives ~ju = diu/dnJ[on behave in the same way. 

In addition to the works we have already referred to, we mention the simple 

and direct proof of Stein [15]. 
REMARK 1.5 (applies also to W ~'p spaces). For  k >  1, the subspace of Hk+°'P(fl) 

determined by the conditions ytu =0 ,  0 < j  < k -  1, coincides with H k+°'p. 
Thus for s > 1/p, u ~ H~'P(f~) n H~ +°'p is equivalent to ~,oU = 0. For  - 1 + 1/p 
< 0 < I/p, H°'P(f~) can be identified with n ~  p, C~°(f~) being dense in both spaces. 

A function u E H°'P(f~) can be extended as 0 in f~' or be pieced together with 
a function in H°'P(t~ ') to obtain a function of  H °'p (on the whole euclidean space). 

This is the reason why the map on Lemma 1.1 is onto for - 1 + l / p <  s < lip. 
For s = k +0 ,  k > 1, the "piecing" requires compatibility conditions (e.g., 

71u . . . . .  Yk- 1 u = 0 if we extend u as 13). 

2. Pure problems for - A  +t5 2 in a half-space. Let A denote the Laplacian 

with respect to all the variables ( t , x )~  R ~+1. Consider the elliptic operator 

(2ol) An = (- -A -~t~2)u, (~ > 0 a fixed parameter.  

The characteristic form of A admits the decomposition 

e +1¢1 -- i(1¢1 ÷i(1¢1 ÷ 
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We now use 7"+ to denote the projections of  H s'p onto H*a'(R~ + 1). Then the 
operators 

(2.2) A+ = F-*[z_+ i(]{12 +a2)½]F 

take the place of  J+ of  (1.5). In particular we have A'_T+ = T+A'_.. 

We shall solve boundary value problems for A in the half space 
R.+ 1 x) [ t > 0}, framework the function spaces H *'p. The + -- {(t, in the of 
statements and the formulas remain true, however, for W s'p as well. We refer 
to Arkeryd [3] for a similar approach. 

The homogeneous Dirichlet problem (HDP) in the space HI+°'P(R+ +1) is the 
following: 

t+o,p satisfying T+Au = T+f. (2.3) Given feH-I+°'P(R"+*),  f ind u ~ , ,+  

l + O p  The condition u ~ H+ ' means that YoU = 0. 

Trn~O~M 2.1. The unique solution of the HDP (2.3) is 

(2.4) u = A+tT+A-Alf  

Moreover, if  f ~ H  k+°'p, k >=O, then T+u~Hk+2+°'P(R++X). 

Proof. Let u be a solution of (2.3). Then T+A_A+u = T+f. Operating with 
A+I'A= 1 and commuting A -'1 with T+ we get 

(2.5) A+IT+A+u = a+lT+aY- l f  

_ rjrl  +O,p since u e n+ , A+u ell°+ 'p , on which space T+ acts by multiplication with 
the characteristic function of  ,,+~'"+ 1 (recall that - 1  + l ip  < 0 < l/p). Thus 
T+A+u = A+u and A+ 1T+A+u = u. Comparing with (2.5), we see that a so- 
lution must have the form (2.4). Conversely, if u is given by (2.4), then 

~.II +O,P T+Au = T+f. Also T+A=lf  is in H~_ p and A+ 1 takes it to . .+  . 

If  f e H k+°'", k > O, we consider v = A-k-IA+IT+Ak_f .  This is A+IT+A-_lf  
modulo a function supported in ~_,+1, hence T+u = T+v. But Ak_f and T+Ak_f 
is in H °'p, and this is taken to H k+2+°'p by AEk-XA+ 1. (Clearly yoV = yo u = 0). 

The non homogeneous Dirichlet problem (NDP) can be posed as 

l~ll +O,p (2.6) T+Au = T+f  and u - Uo ~ -  + , 

where Uo is given in H 1 +O,p. The second condition means that yu = yu o. Having 

solved the HDP, we may assume here that f ¢ 0 .  We set u =v  +Uo. Then v 
lr'/l+0'P Hence v =A+*T+A-_IAuo should satisfy T+Av = - T + A u o  and v ~ _ +  . 

=-A+XT+A+uo  and 

(2.7) u = u o -  A+lT+A+uo • 
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In c a s e u o e H  k+2+°'p, k >O, then T+v, hence also T+u belong to 
~.2  +o,~(R~÷ 1). 

In view of Theorem 1.4, giving uo is equivalent to giving the boundary con- 
dition ~u= ~Uo = c~, eke W ~+ 2+°-l/P'? Summariz.Jng, we have 

THEOREM 2.3. The map T+u-*(T+Au,~u) is an (onto) isomorphism 

Hk+°'P(Rg, +1) ~ nk-2+o'p(Rn+ +1) X wk+O-1/P'p(Rn), k > 1. 

We wish to consider other boundary problems, e.g. Neumann's: 

d t=o (2.8) T+Au = T+f,  f lu  = -~t u = d/, 

in H k+°'v. If k =0,1 we have to show first that ~xU makes sense. To this end, 
we define 

(2.9) H~IP(t2) = {u [ u ~ H"P(f~) and au ~ LP(~)}. 

THEOREM 2.4. The maps Yo:U~U[t=o, Vl: U ~  D,ul,=o have (unique) ex- 
tensions 

(2 .10)  ~'o : H~P(R~+ + I) 0,,,0 ) W o- l/p.p(R. ) 

(2.11) rx: H~+o'P(RY 1) °"° )~ wk-I+o-1/v'P(R"), k = O, 1. 

I f  T+Au = T+f, then ~o and Yx are related by 

(2.12) flu = J~you - iyoA- l f  

Proof. We start with (2.11) for k =1. We have T+A+u = T+AqfeH~'V(R"++l). 
By (2.2) and (1.4) 

Hence for smooth u 

du 
(2.14) T+ -dt = T+Jau + iT+A-i f"  

Now ~oA-~fe W t-  ~lp.p. Also, ~o and J6 commute, J5 being a purely tangential 
operator (of order 1) and ~oJ~u ffi J~(~oU) e W e- tlp,p. Since for any v ~,oT+v = roy, 
we see that the trace of the right hand side of (2.14) gives the required extension. 
If f = 0 then ~1 u = J ~ o  u • By Theorem 2.3 {~'oU] T+Au = O, u e H  I+*'p) ex- 
hausts W l+°-tlp'v, which space is mapped onto Izv ~-tIp'p by Ja. 

For (2.10), we set v --A-_.lueH 1+°'p. Then T+Av = T+A- l f ,  and by the part 
already proved, Viva W °-I/p'p. Now u = A_v = i(Dtv +J~v). Taking traces, 
we see that %u = - iyv + JaYov ~ W °- i/P'P is the required extension. For f ~- 0 
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we add T+A+v = 0  to T+A_v = T+u, and obtain -2iT+Dry = T+u, hence 
you = -2 i? lv  and these exhaust W °- x/p'Phy the part already proved. 

Finally, once yoU is defined fo r /~ 'v ,  we repeat the argument of the first part 
to prove (2.11) and (2.12) for k =0 .  

To prove that the extensions are unique, it suffices to show that the smooth 
functions are dense in H~+°'V(R~+I). We postpone this to Remark 2.6 at the 
end of this section. We note that (2.10) and Theorem 2.3 already imply 

THEOREM 2.3 BIS. The map T+u- - (T+Au,  yoU) of H~ "v onto L v × W °-l/pJv 
is an isomorphism. 

Now we solve the Neumann problem (2.8). For u to be in H k+°'v, f 
should be in H *-2+°'v and ~k in W *-~+°-*lv'v. Having solved the NDP, we may 
assume f =, 0. Then ~tu = Je~oU (by (2.12), which is obviously true for every 
k ~ 0 ) .  Given ~, we set j~-l~, =~b and solve the Dirichlet problem Au =0, 
~0u = ~.  Its solution u e H ~+°'v (or H~ +e'v if k = 0,1) is clearly the unique so- 
lution of the Neumann problem: T+Au =0, 7xu = ¢ .  

For the purpose of the next section, however, it is convenient to reduce the 
Neumann problem to a modified Dirichlet problem (MDP), which assigns the 
1st order tangential operator J+~oU instead of yoU. (The two forms are equi- 
valent since J+ is invertible.) If T+Au = 0 then 

(2.15) flU = JJT~l(J+YoU), 

n+i( l¢' l  = n +i1¢"11 F 

le',l =(Irl '  +~2) */z-n°tice that J and J+ are actually J ,  and J+,a of 
(1.4) and (1.5), but occasionally we omit the 6 to simplify the notation. This 
operator is invertible in W ~'v for any s. Using either reduction, we have 

Trmo~M 3.5. The map T+u-o,(T+Au,~tu) is an isomorphism. 

(2 .17)  Hk+O,V(R.++l) onto > Ht~-2+o,p(Rn++l) × Wk+o-I-llv,V(Rn), k > 2 

(2.18) H~+0.p(R%+I) onto > LP(R,++,) x Wi+°-t-1/v'P(R"), k =0,1 

The same is true for the map T+u ~ (T+Au, ?oBu) where 

(2.19) B = D t + ejDj, ej real, Dj = , 

is a fixed oblique derivative. 

Proof. For the oblique derivative we compute, in analogy to (2.15), (2.16), 
that for solutions of T+Au ~ 0 
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(2.20) 

where 
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yoBu = F-1MQI,~')F(J+?oU ) 
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M(~/, ~') never vanishes and (2.20) is invertible in W ~'p for any s. 
RE~_ARK 2.6. The following results, some of which were obtained here in a 

special situation, are true in general for a properly elliptic (even higher order) 
operator with smooth coefficients defined in a smooth domain ~, provided the 
Dirichlet problem for A in f~ has a unique solution. 

(a) The smooth functions are dense in H~ +°'p, k = O, 1. 
(b) The maps 70 and 71 (trace of the normal derivative) have unique extensions 

to Hka+°'P(ff) and (2.10-11) is true (with ff and aff). 
(c) Theorem 2.3 his for this situation is true. 
(d) Let A* be the formal adjoint of A and B a 1st order differential operator 

whose principal part at each point of 0fl is an oblique derivative (i.e. never tangent 
to Off). The Green's formula 

(2.22) fn  A u . v d x -  .fau . A * v d x =  fjo[BU.O-u "B*v]dtr, 

which holds for a suitable B* and smooth u,v, extends to all u ~H k+°'p. The 
right hand side becomes (?oBU,yo u ) - (?oU,yoB*v) where ( , )  denotes in each 
case the duality between the space to which 70u or ?oBu belong and its adjoint. 

These results are proved in [6, V] in the following order (indeed for 
W~'V(ff) but the proofs carry over to H~'P(f) and conversely--our proofs carry to 
W~,P(R~++ 1)): First (a) is proved for k + 0 = 0 [V, prop. 3.1]. Next (b) is proved 
for k + 0 = 0 IV, Theorem 3.1-1 by using (a) and the Green's formula, which is 
thereby extended. The proof of (c) then follows by an interpolation technique 
using results for H 2,p and H o,v (obtained by a duality argument). Finally (a) is 
proved for general k + 0. This last proof we present for our Hk+°'~(R~++ 1), in order 
to complete the proof of Theorem 2.4 (the uniqueness of Y0,Y~). 

Let T+ Au = T+f, u ~ H]V(R~+ + 1), (s = k + 0). There is a unique solution w to the 
HDP T+Aw = T+f, you = 0, and (with norms taken in R~ +x) 

(2.23) Ilwll<,p<=tlZ+wlk +llT+fllo. <=CllZ+fllo,  
set v = u -  w. Then T+Av =0, ?or =?ou ~ W ~-I/p'O. (Using the Yo found in 
Theorem 2.4 for small s) and by Theorem 2.3 bis. 

(2.24) I1o il . : , .  =< c II %0 
Let now the sequence of smooth fj  converge to f in LP(R~. +*), and wj the (smooth) 
solution of the HDP T+wj =T+f.j. Then wj -w- :+0  in H~IP(R~. +*) by (2.23). 
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Also if the sequence of smooth (Oj converges to ~oV in W "- 1/P'P and vj is the (smooth) 
solution of T+Avj =0,  ~oVj =(Oj, then vj - v--.O in --au~'Pr°~+l~--+ : by (2.24). Hence 
wj + vj ~ u in that space. 

3. Mixed Problems for - A  + 6 2 in a half space. Consider first the mixed 
Dirichlet-Neumann problem in R ~+ 1 = {(t, y, x') I t > 0} : 

(3.1) (T+A, Y-J+)'o, Y+)q)u = (T+f, Y_(O, Y+O), 

where we have used the modified Dirichlet condition Y-J+yoU = Y-(O in R n, which 
is equivalent to assigning Y-~'oU in R ~ since J+ : Ws'P(RE) ~ W ~- ~'P(RL) is an 
(onto) isomorphism. 

From Theorems 1.4, 2.4 we deduce that the following maps are continuous. 

(3.2) H k+°'p ~ T+u .--* (T+Au, Y-J+),oU, Y+71u) ~ n k''p × 1[+ W k + O -  1 - 1/p,p(R~) 

(the H spaces are on R~_ + 1). Here k' = 0 if k = 0, 1, while k' = k + 0 - 2 and the 
subscript A is superfluous if k > 2. We shall find the values of (k + 0, p) for which 
(3.2) is invertible. 

Subtracting a solution of the HDP Y+Au = Y+f, we may assume f = 0. Then 
using the relation (2.15), we find for a function u satisfying T÷Au = 0 the following 
relation between its mixed data and modified Dirichlet data: 

(3.3) Y-(J+roU) = Y_(J+%u), Y+(~lu) = Y+JJ+l(J+yoU). 

Using also (2.16), we conclude that if NQ1, ¢') = ( r / -  i I ¢', I) '/2. (n +i[ ¢',1)-1/2, 
and (O solves the operator equation 

(3.4) 37(O = (Y_ (o, Y+F - 1N(~, ~')F(O) = (Y_(O, Y+ O), 

operating from W °'p to HeW"P(R~:), tr = k -  1 + 0 -  l /p ,  then the solution u of 
the MDP T+Au = O, J+?o u = (O will solve the mixed problem (3.1) with the data 
(0, Y_(O, Y+0), (and conversely). Thus invertibility of (3.1) in Hk+°'P~ is equivalent 
to the same property for the operator (O ~ 37(O of (3.4) in W ~'p. 

Now 37is of the form (1.8). By lemma 1.1, it is invertible H "'p if and only if 37, 
invertible for (0,p), where in our case 

-il  (3.5) N , =  

This, in turn, happens if and only if the map u-- .(Y_u,  Y÷u) is invertible in 
H ½+''p. By Lemma (1.1) this is the case if and only if - 1 + l ip  < 1/2 + a < lip. 
Finally, from Remark 1.5 we deduce that this also is the condition of inver- 
tibility of 37 in W"P----and of the mixed problem in H k+°'p. Expressing this 
condition in terms of k + 0, we have 
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TrI~OREM 3.1. The map 3.2 is invertible if and only if 

(3.6) - 1/2 + 2/p < k + 0 < 1/2 + 21p 

the same result holds for any mixed problem of the type Dirichlet--oblique 
derivative, i.e. if ~1 is replaced by yoB, B given in (2.19). 

Proof. We have to prove only the last assertion about the Dirichlet-oblique 
derivative problems. For that problem, the factor N(r/, ~') is replaced by MOb ~') 
of  (2.21) which satisfies 

(3.7) M(q, ~') = N(rl, ~') D(rl,~') 

where D(q,~') = 1-(i]~j~j~j)/(~ 2 +1~'[ 2 +{$2). Now D(q,~') is never 0 and 

I 
l l  = o o  

(3.8) d . [Argn(m -- 0. 
• ~ - - o o  

By the theory developed in [13] for operators of  type (1.8)(I) the relations (3.7), 
(3.8) imply that _~t and lq are invertible for the same values of  (s,p). 

For each p (3.6) gives the range of  invertibility (of length 1). This is also the 
range of  regularization. A solution of  a mixed problem in H ''p with a "better 
looking" data which allows (by existence) a more regular solution in Ht'~ which 
(by uniqueness) coincide with this other solution, provided s, t are in the range 
(3.6). The value s ---1/2 +2/p is the harrier to higher regularization. However, 
the limited range (3.6) can be fully exploited even for general mixed problems 
as we propose to prove by the end of  the paper. 

We note that for p < 4/3, s = 2 is included in the range (3.6). Hence there is 
a unique (strongt) solution in H 2'p. For p > 4, s = 0 is in the range so that we 
can regularize weak /Y solutions. Both these facts will be used later. It is of 
interest to note that for p = 2 the range (3.6) is 1/2 < s < 3/2. Recall that the 
classical variational approach gives a unique solution in H 1'2. 

REMARK 3.2. We can establish partial regularity of solutions of  mixed prob- 
lems f o r -  A + 6 2 in the directions xt, i > 2, (thus excluding the directions Xo ffi t 
and xl -- y). We observe that the invertibility results for pure and mixed problems 
for T+Au = T+f were reduced to the corresponding problems for T+Au = 0  
(by subtracting some H 2'° solution of  T+Au = T+f). In other words, we have 
used the decomposition 

(3.9) H~+PCR,++ 1) ~- H,~,PfoCR~+ 1) + H2,P(R~+ t) ,  s ~ 2,  

(1) The results of [13] were obtained for M(~', ~/) homogeneous of order 0. But all the considera. 
tions remain true for factors M(~', +7, o') homogeneous in (~', ~, o+), which we have here. One can 
see this by using for H s,p &norms (cf. Section 4) which have the same homogeneity, or by adding 
a new variable. We also note that in case M is a scalar (our case here) the theory of invertibifity 
of j ~  is much easier than the general case. 
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where the meaning of the first summand is self-explanatory. (3.9) is easily seen 
to be a topological equivalence. The corresponding decomposition of the data 
of a boundary problem is given by the trace space cross L~'(R~+ + 1). Now the re- 
relation T+Au = 0 and all the boundary relations are invariant under trans- 

2 lations in the directions x~, i >_- 2. I.e. Dx,u, Dx,~ju, i, j >__ 2. will satisfy the same 
relations and they will be in L p if the corresponding derivatives of the boundary 
data of u belong to W -1-1/p'p, orH±W-I-I/P'P(R~) in the mixed case (where 
we assume p > 4 so that (0, p) satisfies (3.6)). If desired, this partial regularity 
result (and higher ones) can be cast in a form of isomorphism theorems between 
suitable spaces. 

REMARK 3.3. The values s - 1/p (rood 1) are exceptional in the trace theorem 
(Theorem 1.4) and were excluded up to now. These exceptional values can be 
avoided in the regularization process discussed in the next sections, and we shall 
omit mentioning them. 

4. Perturbed problems and local fundamental solution. We start this section 
with an observation. In treating boundary problems concerning the operator 
--A -t-6 2 w e  equip the spaces H ~'p and the spaces derived from them (including 
trace spaces W ~'p) with "6-norms" which are homogeneous in the variables 
(or z,~) and 6 together. Actually the operators (1.4), (1.5), (2.1), (2.2), which 
define the &norms, reappear in the solution of the boundary problems. The 
boundary operators and the domains (euclidean spaces or half spaces) are also 
homogeneous (although independent of 6). Hence we obtain 

COROLLARY 4.1. The norms of the isomorphisms established in Theorems 
2.3, 2.3 bis, 2.4, 2.5 and 3.1 are independent of 6. 

Indeed one can start with the isomorphisms for a special value of 6, say 1, 
then pass to new coordinates by X* = 6-1X. The equation ( - A  + l ) u  = f  
goes over to 

(4.1) ( - A  +62)u * = 62f * 

Other relations change accordingly, with powers of 6 reflecting the degree of 
homogeneity. Due to the parallel change in the norms of the spaces, the isomor- 
phisms norms remain unchanged. 

We shall continue to use &norms in this section and the next one. Estimation 
constants which are independent of 6 will be denotes by K. For instance 

(4.2) IID uII,-,p =< gllull,,p. 
Indeed, this amounts to a norm estimate for F-I j(6 +I  I )-mF, which is 
geneous in (~, 6). 

Next we ask how the norm of a multiplication operator u ~ tk(x)u in H "p 
is effected by using a &norm for the space. The operator norm is denoted by 
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[[qSll s,v. i f  s = k ,  a nonnegative integer and ( f = l  then Supl=l__tSuplD~$l 
is the obvious estimate. Changing coordinates by X* = 6-~X, we obtain for 
f-norms 

(4.3) II q~l[ k,. < K Sup Supi -f'lo' [ 
I~[_ak 

If  k - 1 < [ t] < k (then we set k = t  + ), we can still use (4.3) as an estimate for 

II ll 
LEMMA 4.2. Let L=Y~aaD p be a differential operator of order m. Then as 

an operator from H t+m'p to H t'p (or between similar W-spaces) its norm is 
estimated by KEpllap[[ t'p. The norm of  J~LJ-~ 1 is estimated by 

KEpa([] ap [[t,p + [] Djap [[t,p) 

For j2Lj~2 we have to add also [[D~aal[ t'p to the summation. 

Proof. The assertion about L clearly follows from (4.2). The operators 
JgLJ~ r are pseudo-differential, with the same symbol as L and the assertions 
follow from Calderon results [16]. We treat here the case r = 2, which suffices 
for later purposes. Now J~ = ~i 2 + ED~ and 

s Ls; 2 = L + [ s / , L ] s ;  

j~-2 followed by the commutator [j2,L] is composed of terms 

(4.4) (Dja~DtJ _ aeDPD~)j ~ 2 = [2(Diap)DtJ]Dfl[ 2 + [(D~a~)Da]j; 2 

Now j~-2 and DjJn --z have order 0 (i.e., map H s'p to itself), their symbols being 
standard L p multipliers, homogeneous in (~, 6). The brackets in (4.4) are differ- 
ential operators of order m at most with coefficients Djatj, D2atJ. Hence the result. 

We turn now to boundary problems in a haft sphere 

s ,  --- { ( t , x ) l t  > o,  Ixl 2 + t  z <r2}. 
By OS" we denote the flat part of OS,, attaching + or - if we want the part in 

in y > 0 o r  y < 0 .  

(4.5) A = (A,~oB) or (A, Y-~oJ+, Y+?oB) 

is an abbreviation for a pure or a mixed boundary problem. 
DEFI~mON. An H ~'p [local] fundamental solution (fs) [in Sr] for the mixed 

problem Au = F = (f, dp_,dp +) is a bounded map 

(4.6) E:LP(R n+l) xIIz. Wa'P(R~:) "~ T'1s'pt~n+l~ " 'a  ~"+ J, a = s - l - l i P  

such that 

(4.7) AEF = F [if Support F ~ S,] 
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(4.8) EAu = u [if Support u c S,] ,  u ~ H )  'p . 

I f  s >= 2, we replace L p by H s-2'p in (4.6) and drop the subscript A. 
Thus E is a two-sided inverse of A [in the local case, when it is restricted to 

functions supported in S,]. In the same way we define a [local] fs for a pure 
problem. 

In Sections 2 and 3 we have constructed global f s  for canonical problems, 
with A = - A  + 62 . We shall use in this section perturbation arguments to 
obtain local fs in S, (r small) for general problems with smooth coefficients for 
which the principal part of A at the origin is - A. 

The coordinate transformation X ~ 6-1X maps S~ onto S1. Existence of  a,ls 
in $6 for the original A is equivalent to the existence of afs in $1 for a transformed 
problem in which (cf. [5, Th. 10.4.1]) 

(4.9) A~ = 62A(6X,6-1D) = ( - A  +62) + A  1 

(4.10) B~ = 6B(6X,6-1D) = B o + B  1 

where B ° is the principal part of B of the origin. If a#, b#, the coefficients of A 
and B, are in C ~+f#l and a~,b~ are the coefficients of A1,B 1 then 

(4.11) 6-1"lD~a~ = 0(63-[#[ ), [51 < k +Ji l l ,  Jill > 0 ;  = 0((~2), fl = 0 ;  

151--k +ltl 
(4.12) 6-1~lD'b~ = 0(62-I~1), 151 < k +Jell ;  

= 61-1#1o(1), 151 = k + 1 8 1 .  

Notice that in (4.9) we have adjoined 62 to the principal part, but this does not 
effect the validity of  (4.11). 

We now extend A6,B ~, defined by (4.9), (4.10) for [X I < 1. Thus we set 
A~ = - A + 62 and B~ = Bo for [ X ] > 2. Then we choose some smooth inter- 
polation to extend the definition to 1 < I x [  < 2. After the extension, the coef- 
ficients of  the perturbation:terms A~ B~ still satisfy (4.11) and (4.12), which imply 
by (4.3) and Lemma 4.2 that if k, the degree of smoothness of the coefficients, 
is large enough then the operator norms of A~ and B~ (acting on H ~'p) tend to 
0 with 6. If  s increases, so should k, but for s < 3 it suffices to take k = 1. Now 
the problems associated with - A + 62 and Bo are invertible (the mixed one if 
(3.6) is satisfied) with operator norm idenpendent of 6. Thus we proved part (a) 
of  the following 

THEOREM 4.3(a). Let 2 < s and 6 sufficiently small. There exist H s'p local 
fs in S~ for the problems considered above (for the mixed one, (s,p) should 
also satisfy (3.6)). 

(b) The assertion in (a) is true for problems determined by J~ZAJ~ (instead 
of A) and B. Only the smoothness conditions on A increase by 2. 
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(c) The assertion in (b) implies the existence of an HI '° local fs 
in S~, 0 < s < 2, (for mixed problems, if (s,p) satisfies (3.6)). 

Proof. For part (b), we change X to 8 -1X as above. Then we have to con- 
struct a fs in $1 for 

(4.13) A~' = 82j2A(SX,8-1D)J~ "2 = - A  +82 +j2A1j~2 

Dn+ 1 and B6 of (4.10). We extend A* and B~ to ..+ as in part (a). To estimate the 
perturbation term in (4.13) we again use Lemma 4.2 and the estimate (4.11). 

For part (c) we cannot use a straightforward perturbation argument since the 
underlying spaces H~ p change with A if s < 2. Instead, we argue as follows. 
As and A* are elliptic for small 8 and by parts (a), (b) their Dirichlet problems 
are invertible in H ~'° s > 2. Let G#,G* denote the fs for the corresponding 
modified Dirichlet problems. Let G~b = G6(0,qb), G*q~ = G~'(0,~b). Obviously 
G* = J f  2G~J~. 

By Remark 2.6 7oJ+ and 7oB~ can be defined in H~/v for 0 < s < 2 and the 
MDP is invertible, i.e., G~ exists. Moreover, for 8 ~ 0 the norms of (A~,7o) and 
its inverse G6 approach those of  ( - A  + 82, ~o) and its inverse (as for s >= 2). Hence 
these norms are estimated independently of 8 for small 8. For any s > 0 the 
operator 

(4.14) M~: q~roB~G~p acts in W~'°(Rn), a = s - 1 - 1/p, 

and gives the relation between the boundary data 7oJ+u and 7oB~u for solutions 
of  T+Au = 0. The corresponding operator for the unperturbed case (with 
- A  + 8  z and Bo) was given in (2.20), (2.21) and is denoted now by Mo. It is 
known to be invertible in W ~'p (with norm independent of 8). We claim that 

(4.15) The operator norm II M~-Mo II"' tends to 0 with 8. 

We have M~ = 7oB°G~ + 7oB1Ga. In the second term Ga and 7o have norm 
independent of  8, while the norm of B 1 tends to 0 as in part (a). Thus we may 
assume B = B ° . Then 

(4.16) II M,  - Mo II ¢'' = Sup II (M, - Mo)~ll.,, II (M~ - Mo)Jg~, II-,, * II ~b 11~.~' = Sup , II J2~,ll.,, 

II J~2(M~ - Mo)Jg~k I1,+~,. 
= Sup 

Let M~*= ~on o~, _- S; ~ron ° GjI  --J; ~M,J~ and thenM, - M* =J ;  2(M,-  Mo)J~. 
(4.16) gives its operators norm in W ¢+2'p the smallness of  which as 8--* 0 is 
equivalent to the smallness in norm of J~A1J~ 2 acting on H ~+2'°. This last fact 
was proved in part (b), in constructing afs for problems associated with A~ (notice 
that s + 2  ~2). Thusl(4.15) is proved. 
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Cleary (4.15) implies that M~ is invertible for small ~, hence there is a local 
/ s  in H I  'p for the pure boundary problem (A, YoB). Also (4.15) implies that 
]l ~ - ~ o  I[ ~'p -o0, hence, for small ,~, M =(Y_,  Y+M~)is invertible whenever 
~r  o is. This proves the existence of  a local fs for the mixed problem in case (s, p) 
satisfy (3.6). This concludes the proof of Theorem 4.3. It is easily checked that 
the smoothness condition--the coefficients a# and b# of  A and B belong to 
C 1 + t # t - - i s  enough. 

5. Regularity in the general ease. In this section we establish regularity of 
a weak solution of  a general mixed problem. We consider: 

I. A closed domain ~ c  R "+1 which is a C3-manifold with boundary Bf~. 
A C a (n-1)-dimensional F divides ~f~ into t~f~- and ~Q+. 

II. A =Za#(X)D #, a second order elliptic operator with real coefficients 
a# ~ C 1 + r~l(~). 

III. B = I~b#(X)D #, a first order operator with real coefficients which covers A 
of each point of ~f~. Also b#(x)~ cl+t#t(~).  

A function u ~ LP(f~) is a solution of the mixed problem u = F, F = (f, ~b, ~), if 

(5.1) Au = f  in t2, yoU = ~ on ~f~-, yoBu = ~b on tgf~ + 

f is assumed to be in some (or all) L v, p > 1. Then (cf. Remark 2.6) yoU, yoBu 
are well defined and belong to W-1/v'v(df~) and W - ~ - l / v ' v ( ~ )  respectively. 
We assume at least this much (but usually more smoothness) of ~b and ~ so that 
(5.1) makes sense. 

If u satisfies (5.1) only in a certain neighborhood of Xo e F, we call it a local 
solution. In this case, I - I I - I I I  need be satisfied only in that neighborhood. We 
remark that (5. I) coincides with the customary notion of  weak solution (or local 
solution). Cf. (5.5). 

We can perform (in steps) an invertible C2-transformation of coordinates 
which will: 

(a) Take a local solution defined near Xo e F to a local solution of a mixed 
problem in a half sphere S, (Xo goes to the origin and F us contained in y = 0, 
t = 0 ) .  

(b) Get rid of  the mixed terms D,~j, 1 __< j ___< n in the operator A. This is 
obtained by a transformation of the form t* = t, x* = x*(t, x) with x*(O, x) = x, 
i.e., the transformation is the identity on the plane t = 0. Cf. [2, page 90] for 
details. 

2 =j<=n, on (c) Get rid of  the mixed terms Dyx: 2 < the plane t = 0. This is 
done as in (b), but for the variables y, x2 , . . . , x , .  After this, we have in S, 
ay~,j(t, y, x') = O(t), t ~ O. Here ay~j is the coefficient of Dy~j in A. 

(d) Set the principal part of  A of the origin equal to - A .  For this we divide 
by minus a ,  and use an affine transformation on y, x2,. . . ,x~. (Performing a 
further rotation if necessary, we may assume the plane y = 0 is preserved.) 
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The boundary operator B in the transformed problem still covers the trans- 
formed A. The smoothness properties of the coefficients, the data and the so- 
lution itself are clearly preserved by the coordinate transformation and its in- 
verse. Hence it suffices to prove the regularity results for a local solution of a 
mixed problem A = (A, Y-YoJ+, Y+Yo B) in a half sphere St, and we may assume 
that (b), (c), (d) were done. 

LEMMA 5.1. Let l < q < 4 ,  f ~ L  ~, q~±~W1/a'~(R~) and let u ~ H  l'v, p < q ,  
be a local solution of Au = F = (f,  c~_, d?+). Then actually u E H 1'~. 

Proof. Here (and later) it suffices to prove the assertion in some Sa. For 
1 < p < 4 we verify that (s, p) satisfies (3.6) for s in an interval around s = 1. 
Thus for some 6 there is a HS'Pfs in S~. Let ( be a C ~° function which is 0 for 
[X] > ~ and 1 for [X] _~ ½6. Then 

(5.2) A(u = (Au + A'u e L p 

since A' is a 1st order operator. The boundary data of (u are in W-I/P'P(R~:) 
(near the origin) as one easily verifies; hence, applying the fs  E we get that in S~ 

1 2 
(5.3) ~u = EA(~u) e H  ~'p for  any s < ~ + ~. 

The same is true for u in S,~. In particular we can choose s = 1 + 1/p < 1/2 + 2/p. 
By the Sobolev (fractional) embedding theorem [9], we obtain u ~ H  TM with 

( - - t  Pl 1 = P-1 1 1 . If p~ > q we have finished. Otherwise we repeat the 
n + l  

( process m times until p~l =p-1  1 - ~ - ~ - - [  < q - 1 .  Then u ~ H I ' P ' ~ H  TM. 

If  the weak solution u is just in L p (instead of H ~'p) it is not evident that the 
term A'u in (5.2) is in L p. To prove this is so, we need the following "partial 
regularity" theorem, which will be validated later: 

THEOREM 5.2. Let p > 4 ,  f e L ~  dp± eW-t/Pa'(R~).  Let u e I ~  be a local 
solution of Au = F.  Then D~u ~ L p, j >= 2. 

THEOREM 5.3. Let I, II and III be satisfied and let p > 4. Assume f e L t ' ,  
q~+~W-I/Pa'(R~) and let u ~ H  l'q, l < q < p  or u e ~  °, p o > 4 .  Let u be a 

1 2 
local solution of  Au = F .  Then u e H  ~a' for any s < ~  + - .  

P 

Proof. I f u e H  ~'~ then by Lemma 5.1 it is in H ~'4-~ for any e > 0, hence in L p° 
for some Po > 4. Next we observe that it is enough to prove the theorem for 
Po =P because if Po < P we first obtain u ~ H s'p° and use the Sobolev theorem 
to obtain u e L p`, p~ > Po. Repeating the argument several times we get u ~ L ~. 
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Now the choice of s and p ensures that (p,0) and (s,p) satisfy (2.6), and by 
Theorem 4.3(c) there is a local f s  in S~. Let ((X) =l-Ij((xj) where ((z) is a C oo 
function of one variable supported in z 2 < ~2(n + 1)- 1 (SO that ((X) is supported 
in So), and is 1 in z 2 < t52(4(n + 1))- 1. We claim that A((u) e L p. The only 
terms in doubt are a~jD~(Dju coming from the terms a~jD~ 2 in A. For j __> 2 they 
are in L p by Theorem 5.2. For i = j  = 0 Do( --Dr( vanishes near t = 0 and for 
i = j  = 1 DI~ = Dr( vanishes near y =0.  However outside a neighborhood of 
t = 0, y = 0 we know Dju ~ L p by the (local) interior regularity or boundary 
regularity for pure problems. In the mixed terms j = 0 i >= 1 the coefficient a~o 
vanishes because of the special form of .4 described in (b) above, while by (c) 
ail =0(t) .  Thus it suffices to know that tDju e L  p. This (and also t2Dou e L )  
follows quite easily from the a-priori estimates for the Dirichlet problem (one 
multiplies u by a function g/ which vanishes near t = 0 and estimates g/u). 

COROLLARY 5.4. I f  U e L  p, 4)± e W-1/P'P(R~) for  all p then any local solu- 
tion of a mixed problem which is in L ,  q > 4 is in H~lder class or for  any ~ < ½. 

Indeed it is in H 1/2,p for any p, hence in C ~ by the Sobolev embedding theorem 
(fractional form [9]). 

We return now to Theorem 5.2. After subtracting a (smooth) solution of 
a Dirichlet problem, we may assume Au = f ,  Y-7oU = 0 Y÷7oBu = (a+. Let 
(A*,~o,7o B*) be the adjoint mixed problem. It is uniquely determined and I, 
II, III are satisfied for it. Let F ~ a  be the class of smooth functions which vanish 
outside S, and near its curved boundary, while on the flat part they satisfy homo- 
geneous adjoint boundary conditions. 

(5.4) 7oO = 0 for y <= O, ~oB*v for  y __> 0. 

Using Green's formula we obtain for v e Fm~a 

(5.5) f uA*vdX = f y'vdX- f,>o,O(BU'v)dx 
= ( f , v ) -  (Y+~b,~oV > 

where Y+~b e W- t/P'P(R~) and ( ,  > is the duality between this space and W+ I-  i/p' p,. 
(If Y_?oU = Y - g / ~  0 we get an additional term (Y_g/,~,oB*v) on the right side 
of (5.5), and this relation is the customary definition of a local weak solution.) 
From (5.5) we get 

(5.6) [(u,A*o)I----[]Yllo.,llvl[o., , ÷  

The analogous inequality for Voi,i,hlet implies u e H I"p. This is proved in [1] 
where it is first established that the derivatives Dju e L p, j > 1 [1, Lemma 5.2]. 
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The translation argument there carries over to our case for the derivatives 
Dju, j >= 2 (excluding the t and y directions). Indeed the main tool there is the 
local fs of the adjoint problem in the space H 2'p'. [1, Lemma 4, 2]. Using the 
condition (3.6) we see that H 2'p' local fs for the mixed case exists of p' < 4/3, 
i.e., p > 4. We notice that the proof referred to in [1] can be extended with a 
minor change, to Vmi~od or VB (B a pure boundary condition) although the spaces 
are not invariant under translations in the xi directions, but we omit the details. 
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