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ABSTRACT

It is shown that weak solutions of mixed elliptic problems are Holder con-
tinuous of any order less than 1/2 and that they possess higher regularity in
non-critical directions.

0. Introduction and statement of results. The regularization principle for
elliptic equations and boundary value problems roughly states that weak solutions
are strong and strong solutions are as smooth as the coefficients of the operators,
the domain and the data allow. For example, if A4 is a linear elliptic operator of
order m, A* its formal adjoint and u e [P(Q) satisfies f ud*¢dx = f fodx for all
¢ € CY(Q) with fe [P(Q), then u has generalized derivatives up to order m in
Q), Q' a compact subdomain of Q. Similar (but deeper) results establish
strong differentiability up to the boundary of weak solutions of boundary value
problems. We mention in particular the works of Agmon [1], Lions-Magenes [6]
Schechter [10] and the exposition of Magenes [8]. The regularity principle is
known to be valid for local solutions, and this is the approach of [1]. In [6, 10]
the treatment is global. Another feature of these works is that, rather than posing
the problems in a weak form (as in the example above), the operators are extended
(by duality and interpolation) to mappings between suitable function or distri-
bution spaces in Q or Q. The regularization is carried out in this framework,
and usually appears as invertibility of; the extended mappings. This method
requires the development of a rather heavy machinery of distribution spaces
and their trace (boundary) behaviour. This is, however, a natural functional-
analytic approach to boundary value problems and in addition there is an
interplay between the theory of elliptic problems and the abstract properties of
the distribution spaces.

In this article we regularize (very) weak solutions of mixed second order real
elliptic problems (in any dimension). Thus our solutions satisfy a boundary
condition which breaks across a smooth (n—1)-dimensional submanifold I" of
0Q (which is smooth and n-dimensional). Due to the local character of the known
regularity results, only the behaviour near points of I has to be studied. We shall
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use a global approach to prove invertibility (in suitable spaces) of certain cano-
nical mixed problems where A = —A + 62, the boundary operators are Dirichlet
(the trace) and constant oblique derivatives, the domain is the half space
R '={(t,y,x")|t>0)} and the break manifold I' is the plane ¢ =0, y =0.
But in proving regularity for general mixed problems, in particular partial regu-
larity in directions parallel to I, we also use local methods close to Agmon’s [1].

There is an upper limit to the total regularity one can expect for mixed problems.
This is seen in the following example. Let u(t,y) = Im(y + it)* in the half plane
t> 0. It is harmonic there and

lim u(t,y) =0, y>0; lim du

t,y) =0, <0.
Jim lim dt( ) y

The data of this mixed Dirichlet-Neumann problem is as smooth as one can
wish—identically zero. Still, Holder continuity of order 4 is the most one can
get here.

Our results are summarized as follows. Let A be a real elliptic operator in
Qc R" 1. Let the (real) boundary operator ‘“‘cover’” A at each point of 9Q.
Assume that the coefficients of the operators, 0Q and I" (the break manifold)
are smooth (C? is enough), and let the data (for a nonhomogeneous problem)
be reasonably smooth. Let ueI?, p>4 or let ues H% g > 1 be a weak local
solution of the mixed problem near X,eI'. Then u is (near X,) in the space
H*? for every s < + + ; (hence if p is large enough u is a-Holder continuous,
for any a« < 3). Moreover, u has partial regularity in directions parallel to T,
ie., first derivatives of u in such directions belong to LP. These are
the directions orthogonal to ¢ and y after a neighborhood of X, in Q is trans-
formed on a half-spherical neighborhood of the origin {X =(s, y,x’)]t:g 0,
IX | < 6} and the break manifold goes over to the plane t =0, y =0.

Higher regularity in the directions parallel to I" is obtained if the operator
have constant coefficients. We believe this is true in general and the barrier of
regularization exists only in the two “‘critical”” directions. In these two directions
one can regularize u up to order 4 — ¢ in terms of Holder continuity. Thus our
results are optimal—except for the possibility that the ¢ can be dropped, but
this is not likely.

Holder continuity at some order o (which is difficult to estimate) for solutions
in H'? also follows from general results of Stampacchia [14] about elliptic
problems with various discontinuities. Continuity for some special, mixed boun-
dary problems was obtained by Fichera [4]. The general method of Stampacchia
[14] is closer to potential theory. Our methods are specialized to mixed problems,
and essentially use reduction to pure elliptic problems. The singular integral
equations involved in this reduction were studied in [13] (see Footnote in Section
3), even for the vectorial case which arises in the treatment of higher order mixed
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problems. Some of these problems are amenable (albeit technical difficulties)
to our method of regularization.
The plan of the paper is the following:

Notations, spaces of functions and distributions.
Pure problems for —A + &% in a half space.

Mixed problems for —A + 67 in a half space.
Perturbed problems and local fundamental solution.
5. Regularity in the general case.

W=

I am indebted to Professor S. Agmon for useful conversations concerning
this paper.

1. Notations, spaces of functions and distributions. Let x =(x,---,x,) re-
present a point in R,, & =(&;,-++,&,) a point in the dual space. We also use the
notation x, =y, x =(,x"), & =n, &€ =(,¢), R} ={(y,x)|y>0} and
R? = {(y,x’)l y <0}. The spaces CXQ), C3(Q) have their customary meaning.
Let H*? = H>P(R") be the space of distributions u for which

1.1 lulsp = |F~* +]|E}2)"%Fu | oam < o,

here (Fu)(£) = fu(x)e™*dx is the Fourier transform. We assume 1 < p < co.
For an integer k =0, H*” consists of all functions with distribution derivatives
up to order k belonging to I”. Alternatively, H*” is obtained as the closure of
CJ(R™ under the norm (1.1). For basic properties of the spaces H*” (and
W** used later) we refer the reader to [6, 7, 8, 10]. We describe here some pro-
perties which are particularly relevant later.

Let © be a domain, Q its closure. We set

1.2) HZ? = {ueH"?|support u < Q}.

For Q = R3t!, the space (1.2) is denoted HI”. If 8Q is smooth, non self-inter-
secting (as we shall always assume), HZ® is the closure of CJ(Q) in H*?, Let

(1.3) H*!(Q) = H*?/HZF , Q' is the closed complement of Q.

This is the space of all restrictions of u e H*? to Q, equipped with the quotient
norm. For Q@ =R}, Y,: H*?—» H*P(R}) is the projection onto the quotient
space, and || Y,u |, , denotes the quotient form. Thus Y, is the class u — H2?,
and is represented by u or any other element in this class. For s =0 we can identify
I?(R%) with I%, and Y, with multiplication by the characteristic function of
R’ . This is actually true for —1 +1/p <s < 1/p (see Remark 1.5). For real r let

(14) J; = F7Y& +|EY*F, 6>0.

Then for each 3, || J5u||.» is a norm equivalent to | |, , (equal if & = 1). More
generally, J; maps H"? onto H*™"*. Let
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(L.5) Ve = FT i &)? + 6)iTF.

(Usually we omit the subscript 4.) Both operators are invertible, and map
H™® onto H*™"” so the norms | J} ;u |.» are again equivalent to [ u |, ,. How-
ever J_ also maps HZ? onto H* "*, because the factor within brackets in (1.5)
is analytic for Imn< 0. Hence JZ(u + H2P) =J"u + HT"?, ie. J_Y,u=Y, J_ u.
J', acts in the dual fashion (in particular J%, and Y_ commute) and we have the
norm relations

(1.6) | Yeullop ~ | Yed%u fs-rp(~ | YiTzu|p if s =7).

A differentiation of order k maps H*? into H* %P and since it preserves sup-
ports, it acts similarly in HZ?, H**(Q). Multiplication by a function of C*Q)
also preserves supports and maps H*?(Q) into itself if |s| < k. For s <0, this
follows from the reflexitivity of our spaces, the conjugate spaces being

WD @Y = B @HQ@) = B Up +Up = 1.

Lemma 1.1 [11,13]. The map u — (Y_u, Y, u) of H*?into H**(R") x H*?(R",)
is invertible if and only if — 1 +1/p<s<1/p.If s> 1/p but s — 1/p is not an
integer, then the map is 1-1 and has a closed range.

We consider a more general operator, with domain and range as above
1.8) M:u—(Y_u, Y. F-'M()Fu).

We assume that M = F~!M(¢)F is bounded and invertible in H*?. Expressing
the norms in H*P’(R}) by means of I norms, using (1.6), it is shown [13, Theo-
rem 6.1] that

Lemma 1.2. M is invertible (1-1, onto, etc.) for (s,p) if and only if M, is
invertible (1-1, onto, etc.) for (0,p) where M, is associated with the Jactor

i él 2 +52 +
(1.9) M(&) = M(S) (Z +:§|| ¢'||2 T 52;

), > 0 fixed.

This in turn is equivalent to the operator
(1.10) Y,v - Y, F IM(&FY,v acting in I(R%)
being invertible (1-1, onto, etc.).

To describe traces of H*P(Q) in dQ, we need the spaces W*? (which
coincide with H*? for integral 5). There are several equivalent definitions, and
we refer the reader to the literature (e.g. [6], [7], [8], [15]). The spaces
WP, WHH(RY), WP, WP(Q), and the maps Y, are defined as in the H*? case.
The relations (1.7) serve as definitions of the spaces for negative s. Differentia-
tions and multiplications (in general, linear partial differential operators)
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again act in the same way, and so do J", J', but only if r is an integer. Lemma
1.1 is also valid {6, IV]. We shalluse || ¢ |, | Y26, , etc. to denote W*? norms
as well, usually for functions denoted by Greek letters, but no ambiguity should
arise, especially as W*? norms will be used for traces on dQ or R* = 9R""?, and
H*? norms will be used in Q or RY™.

ReMARK 1.3. The reduction of || Yiu |, to I’ norms in (1.6) is not true
any more for W%, unless s is an integer. But the following is still true:

If the operator (1.8) is invertible in the H*? scale for s; <5 <s,, then it is
invertible in the W*? scale for s; <s <s,. This follows from the fact that

W*? is obtainable from H*'* and H**” by interpolation [7].

THEOREM 1.4 (The trace theorem). Let k> j = 0. Then

) =@, (D =5

defined originally for C* functions, extends to a bounded map
(1.11) v HOP(RYY) onto WETIT07URR(RT),

0 is always assumed to satisfy — 1 +1/p <8 <1/p. v, is also denoted by y and
called the trace operator. The same result holds for W***? instead of H**®?
(the trace space is the same in both cases). If Q has a smooth boundary the
traces of the normal derivatives yu =0 iy on! lm behave in the same way.

In addition to the works we have already referred to, we mention the simple
and direct proof of Stein [15].

Remark 1.5 (applies also to W*P spaces). For k2 1, the subspace of H***?(Q)
determined by the conditions yu =0, 0= j< k-1, coincides with HE "%
Thus for s> 1/p,ue H**(Q) N HL'*? is equivalent to you =0. For —1 + 1/p
< 8 <1/p, H*?(Q) can be 1dent1ﬁed with H‘-’z" C () being dense in both spaces.
A function u e H*?(Q) can be extended as 0 in Q' or be pieced together with
a function in H*?(Q’) to obtain a function of H"? (on the whole euclidean space).
This is the reason why the map on Lemma 1.1 is onto for —1 +1/p<s<1/p.
For s =k +0, k=1, the ‘‘piecing”’ requires compatibility conditions (e.g.,
pyu =+ =74 =0 if we extend u as 0).

2. Pure problems for —A + 6% in a half-space. Let A denote the Laplacian
with respect to all the variables (¢, x)e R***. Consider the elliptic operator

.1 Au = (—=A +8%u, § >0 a fixed parameter.
The characteristic form of A admits the decomposition

2 +|E? +8% =[r—i(|E]* +8%)] - [= +i(|E]* +67)*].
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We now use T, to denote the projections of H*? onto H*?(R%''). Then the
operators

(.2 Ay = F'[r+i(|¢]* +8HHF

take the place of J, of (1.5). In particular we have A"T, = T, A".
We shall solve boundary value problems for A in the half space
RV ={(, x)|t>0}, in the framework of the function spaces H*?. The
statements and the formulas remain true, however, for WF as well. We refer
to Arkeryd [3] for a similar approach.
The homogeneous Dirichlet problem (HDP) in the space H!*®P(R%*!) is the
following:

(2.3) Given fe H ' **2(R™"), find ue H}*%P satisfying T,Au = T.f.
The condition u e H*®? means that you = 0.
TueoreM 2.1.  The unique solution of the HDP (2.3) is
24 u =A;'T, AZYf
Moreover, if fe H**®?, k20, then T,ue H****%7 (R%}1).

Proof. Let u be a solution of (2.3). Then T,A_A.u = T,f. Operating with
A7'AZ! and commuting AZ! with T, we get

Q.5) AT Au = AT'T AZY

since ue HL*%?, A, ue H%? , on which space T, acts by multiplication with
the characteristic function of R%"' (recall that —1-+1/p<0<1/p). Thus
T,A,u = A,u and AJ'T,A,u = u. Comparing with (2.5), we see that a so-
lution must have the form (2.4). Conversely, if u is given by (2.4), then
T,Au = T.f. Also T, AZ'f is in H%? and A;" takes it to HL*®7,

If fe H*®*?, k = 0, we consider v = AT* 1A' T, A" f. This is A7 T, AZ'f
modulo a function supported in R"*", hence T,u = T,v. But A" f and T, A4*f
is in H*?, and this is taken to H**2*%? by A7*" 147", (Clearly y,v0 = you = 0).

The non homogeneous Dirichlet problem (NDP) can be posed as

(2.6) T,Au =T, f and u —uy,e H\*%? |

where u, is given in H'*%?, The second condition means that yu = yu,. Having
solved the HDP, we may assume here that f30. We set 4 =v +uy. Then v
should satisfy T,Av = —T,Au, and ve HL*®? Hence v = A7'T, AT Au,
= —A;'T, A uy and

@7 u = uyg— AT A, u,.
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In case uge H**>*%?, k20, then T,v, hence also T,u belong to
Hk+2+0,p(R1+l)

In view of Theorem 1.4, giving u, is equivalent to giving the boundary con-
dition yu=yu, = ¢, ¢ W **2*9~1PP Summarizing, we have

TueOREM 2.3. The map T,u— (T, Au,yu) is an (onto) isomorphism
H"“"’(R'L“) - Hk—2+0,p(Rn++1) X Wk+0—1/p,p(Rn)’ k > 1.

We wish to consider other boundary problems, e.g. Neumann’s:

@.8) Todu =T.f, yu = Su| =y,
21 2 P

in H**%?_If k =0,1 we have to show first that y,u makes sense. To this end,
we define

(2.9 HPQ) = {u|ueH(Q) and AueI’(Q)}.

THEOREM 2.4. The maps yo:u—>ul—o, y1:u—Dul=o have (unique) ex-
tensions

(210) Yot HO p(Rn+ 1) onto Wo—llp,p(Rn)
2.11) p HEPOP(RAHY) ontey ppk—1t0=lipppmy - | =0,1.

If T,Au = T, f, then 7, and y, are related by
(2.12) P = Jspou — iy Al

Proof. We start with (2.11) for k=1. We have T, 4, u=T,A-'fe H"P(R}?).
By (2.2) and (1.4)

(2.13) Ay = [dt+F Y& +6% lsz] = —i (dt ;J,).

Hence for smooth u

U JuiT A7,

(2.14) T.=

Now y,4~ fe W™ YP? Also, y, and J, commute, J, being a purely tangential
operator (of order 1) and y,J;u = J;(you) € W* /PP Since for any v y,T.0 = oo,
we see that the trace of the right hand side of (2.14) gives the required extension.
If f =0 then y,u = Jspou. By Theorem 2.3 {pou|T,Au =0, ue H**%%} ex-
hausts W1+?~ VPP which space is mapped onto W°~ /PP by J,.

For (2.10), we set v =AZ'ue H'**?. Then T, Av = T, A™'f, and by the part
already proved, y,pe W?~1PP Now u = A_v =i(D +Jv). Taking traces,
we see that you = —iyv +Jzpove WP~ /PP is the required extension. For f =0
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we add T, A,v =0 to T,A_v = T,u, and obtain —2iT, Doy = T,u, hence
yo# = —2iy,v and these exhaust W °~ /PP by the part already proved.

Finally, once you is defined for H*?, we repeat the argument of the first part
to prove (2.11) and (2.12) for k =0.

To prove that the extensions are unique, it suffices to show that the smooth
functions are dense in HY*®P(R%'?). We postpone this to Remark 2.6 at the
end of this section. We note that (2.10) and Theorem 2.3 already imply

THeOREM 2.3 BIS. The map Tou — (T, Au, you) of H%? onto I? x Wwe~1/e.»
is an isomorphism.

Now we solve the Neumann problem (2.8). For u to be in H**%? f
should be in H*"2*%? and y in W*~1*9~ 122 Haying solved the NDP, we may
assume f = 0. Then y,u = J,you (by (2.12), which is obviously true for every
k=0). Given , we set J; 'y =¢ and solve the Dirichlet problem Au =0,
yout =¢. Its solution ue H***? (or HX**? if k =0,1) is clearly the unique so-
lution of the Neumann problem: T, Au =0, y,u =y.

For the purpose of the next section, however, it is convenient to reduce the
Neumann problem to a modified Dirichlet problem (MDP), which assigns the
1st order tangential operator J,you instead of y,u. (The two forms are equi-
valent since J, is invertible,) If T, Au =0 then

(2.15) i = JIL T 4y0),

2 12 2 — il g \1/2
I +|‘§| +0 _ g1 ('1 ‘Iéal)
(2.16) JJ r]+i(|§"2+62)1/2F T |2, F

and |&,] = (|&|* +8%)">*—notice that J and J, are actually J, and J, ; of
(1.4) and (1.5), but occasionally we omit the é to simplify the notation. This
operator is invertible in W** for any s. Using either reduction, we have

THeOREM 3.5. The map T,u— (T, Au,y,u) is an isomorphism.
(2'17) Hk“’p(R'fl) onto 3 Hk—2+0,p(R1;‘+l) X Wk'l-ﬂ—l—l/p,p(Rn , k >2
(2.18) Hi+0,p(R1;+ 1) onto 3 LP(R'.I: l) % Wk+9—1—-1/p,p(Rn)’ k =0,1
The same is true for the map T,u — (T, Au, y,Bu) where

2.19) B =D, + LoD, o real, (D, =i),
j=1 dxj

is a fixed oblique derivative.

Proof. For the oblique derivative we compute, in analogy to (2.15), (2.16),
that for solutions of T, Au =0
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(2.20) 70Bu = F7'M(n,&")F(J 1 you)
where
/ ﬂ_ilf'al 1/2[ X,
2.21 M@n,&") = | ——72 V- 7 3|
@21 we) =(Tire) | le s

M(n, &) never vanishes and (2.20) is invertible in W*” for any s.

ReMARK 2.6. The following results, some of which were obtained here in a
special situation, are true in general for a properly elliptic (even higher order)
operator with smooth coefficients defined in a smooth domain Q, provided the
Dirichlet problem for A in Q has a unique solution.

(a) The smooth functions are dense in HY*®?, k =0,1.

(b) The maps y, and p, (trace of the normal derivative) have unique extensions
to HY'*P(Q) and (2.10-11) is true (with Q and Q).

(¢) Theorem 2.3 bis for this situation is true.

(d) Let A* be the formal adjoint of 4 and B a 1st order differential operator
whose principal part at each point of Q is an oblique derivative (i.e. never tangent
to 6Q). The Green’s formula

[ Yol Bu - v — u - B*v]do,
o0

o

(2.22) f Au - vdx - { u* A*vdx =
Q Ja

which holds for a suitable B* and smooth u,v, extends to all ue HX*®2 The
right band side becomes {yoBu,you > — {you,yoB*v> where {, > denotes in each
case the duality between the space to which yyu or y,Bu belong and its adjoint.

These results are proved in [6, V] in the following order (indeed for
W5?(Q) but the proofs carry over to H*’(Q) and conversely—our proofs carry to
WP(R"1)): First (a) is proved for k+ 8 =0 [V, prop. 3.1]. Next (b) is proved
for k +8 =0 [V, Theorem 3.1] by using (a) and the Green’s formula, which is
thereby extended. The proof of (c) then follows by an interpolation technique
using results for H*? and H %7 (obtained by a duality argument). Finally (a) is
proved for general k + 6. This last proof we present for our H5 ®?(R%*1), in order
to complete the proof of Theorem 2.4 (the uniqueness of y,,7;).

Let T, Au = T.f, ue H{*(R%'), (s =k +6). There is a unique solution w to the
HDP T,Aw =T.f, you =0, and (with norms taken in R%"")

(2.23) | wlage <N Towllap+ 1 Tofllo < €| Tofloss

set v =u—w. Then T,Av =0, yov =ypoue WeTimpp, (Using the y, found in
Theorem 2.4 for small 5) and by Theorem 2.3 bis.

(2.24) | ]| e < €900
n+1

Let now the sequence of smooth f; converge to fin I’(RY" "), and w; the (smooth)
solution of the HDP T,w; =T.f; Then w;— w50 in HP(RY") by (2.23).

ls— i/p.p
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Also if the sequence of smooth ¢ ; converges to yovin W*~ UrPand v ;is the (smooth)
solution of T, A4v; =0, yv; =¢,, then v; — v~ 0 in HF?(R}'") by (2.24). Hence
w; +v;— u in that space.

3. Mixed Problems for — A + 52 in a half space. Consider first the mixed
Dirichlet-Neumann problem in R**' ={(t,y,x")| ¢t > 0}:

(3.1) (T4 A, Y_J w70, Yyypu = (T4 f, Y_9, Y, ¥),

where we have used the modified Dirichlet condition Y_J ,y,u = Y_¢ in R®, which
is equivalent to assigning Y_you in R" since J,: W™P(R")—» W*~P(R") is an
(onto) isomorphism.

From Theorems 1.4, 2.4 we deduce that the following maps are continuous.

(3.2) H\**" e T u— (T, Au,Y_J ,you, Y, y,u)e H¥P x I1, Wwk*0-1-1pp(Rn)

(the H spaces are on R%'!). Here k' =0if k =0,1, while k’ =k + 6 — 2 and the
subscript A is superfluous if k = 2. We shall find the values of (k + 6, p) for which
(3.2) is invertible.

Subtracting a solution of the HDP Y, Au =Y. f, we may assume f =0. Then
using the relation (2.15), we find for a function u satisfying T, Au = 0 the following
relation between its mixed data and modified Dirichlet data:

(3.3 Yo(Jyyou) =Y (Jypou), Yi(pu) =Y, JJY 1(J+y0u).

Using also (2.16), we conclude that if N(y,&") =(n —i|&,)"/2. (n +i] &))" "2,
and ¢ solves the operator equation

34 No =(Y-¢,Y,.F 'N,EVFd) =(Y_¢, Y. ¥),

operating from W®? toTI,W™?(R}), 6 =k — 1 46— 1/p, then the solution u of
the MDP T, Au =0, J . y,u = ¢ will solve the mixed problem (3.1) with the data
(0,Y_¢, Y, ¥), (and conversely). Thus invertibility of (3.1) in H**%?, is equivalent
to the same property for the operator ¢ — Nop of (3.4) in W2,

Now N is of the form (1.8). By lemma 1.1, it is invertible H*? if and only if N,
invertible for (0, p), where in our case

B n- llé,dl 1/2+¢
o

This, in turn, happens if and only if the map u —(Y_u, Y, u) is invertible in
H***? By Lemma (1.1) this is the case if and only if —1 +1/p<1/2 + o <1/p.
Finally, from Remark 1.5 we deduce that this also is the condition of inver-
tibility of N in W*?—and of the mixed problem in H**®? Expressing this
condition in terms of k + 0, we have



160 ELTAHU SHAMIR Israel J. Math.,

THEOREM 3.1. The map 3.2 is invertible if and only if
3.6) ~12+2/p<k +0<1/2 +2/p

the same result holds for any mixed problem of the type Dirichlet—oblique
derivative, i.e. if y, is replaced by y,B, B given in (2.19).

Proof. We have to prove only the last assertion about the Dirichlet-oblique
derivative problems. For that problem, the factor N(,&’) is replaced by M(n,£")
of (2.21) which satisfies

(3.7 M@, &) = N(m,&YD.L)
where D(1,¢") = 1—(iZ0;&)/(n* +|¢&'|* +6%). Now D(n,¢’) is never O and

(39 [ atamomen -o.

By the theory developed in [13] for operators of type (1.8)(*) the relations (3.7),
(3.8) imply that ¥ and N are invertible for the same values of (s, p).

For each p (3.6) gives the range of invertibility (of length 1). This is also the
range of regularization. A solution of a mixed problem in H*? with a ‘‘better
looking’* data which allows (by existence) a more regular solution in H*?, which
(by uniqueness) coincide with this other solution, provided s,¢ are in the range
(3.6). The value s ='1/2 +2/p is the barrier to higher regularization. However,
the limited range (3.6) can be fully exploited even for general mixed problems
as we propose to prove by the end of the paper.

We note that for p < 4/3, s =2 is included in the range (3.6). Hence there is
a unique (strong!) solution in H*?. For p> 4, s =0 is in the range so that we
can regularize weak I? solutions. Both these facts will be used later. It is of
interest to note that for p =2 the range (3.6) is 1/2 < s < 3/2. Recall that the
classical variational approach gives a unique solution in H"2.

REMARK 3.2. We can establish partial regularity of solutions of mixed prob-
lems for— A + 62 in the directions x;, i = 2, (thus excluding the directions x, =1
and x, = y). We observe that the invertibility results for pure and mixed problems
for T,Au = T, f were reduced to the corresponding problems for T,Au =0
(by subtracting some H>P solution of T, Au = T, f). In other words, we have
used the decomposition

(3.9 HPP(RYY = HY RV +HY(RYY), s=<2,

(1) The resulis of [13] were obtained for M(&’, %) homogeneous of order 0. But all the considera-
tions remain true for factors M(&’, %, §) homogeneous in (&', 7, 6), which we have here. One can
see this by using for H5? é-norms (cf. Section 4) which have the same homogeneity, or by adding
a new variable. We also note that in case M is a scalar (our case here) the theory of invertibility
of M is much easier than the general case.
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where the meaning of the first summand is self-explanatory. (3.9) is easily seen
to be a topological equivalence. The corresponding decomposition of the data
of a boundary problem is given by the trace space cross I?(R%'"). Now the re-
relation T, Au = 0 and all the boundary relations are invariant under trans-
lations in the directions x;, i 2 2. Le. D, D3, u, i, j = 2. will satisfy the same
relations and they will be in LPif the corresponding derivatives of the boundary
data of u belong to W™1"1/P? orTI, W'~ '/P’(R%) in the mixed case (where
we assume p > 4 so that (0, p) satisfies (3.6)). If desired, this partial regularity
result (and higher ones) can be cast in a form of isomorphism theorems between
suitable spaces.

ReMARK 3.3. The values s =1/p (mod 1) are exceptional in the trace theorem
(Theorem 1.4) and were excluded up to now. These exceptional values can be
avoided in the regularization process discussed in the next sections, and we shall
omit mentioning them.

4. Perturbed problems and local fundamental solution. We start this section
with an observation. In treating boundary problems concerning the operator
~A + 6% we equip the spaces H *? and the spaces derived from them (including
trace spaces W7) with ‘‘6-norms’’ which are homogeneous in the variables &
(or 7,£) and S together. Actually the operators (1.4), (1.5), (2.1), (2.2), which
define the d-norms, reappear in the solution of the boundary problems. The
boundary operators and the domains (euclidean spaces or half spaces) are also
homogeneous (although independent of 5). Hence we obtain

COROLLARY 4.1. The norms of the isomorphisms established in Theorems
2.3, 2.3 bis, 2.4, 2.5 and 3.1 are independent of 9.

Indeed one can start with the isomorphisms for a special value of §, say 1,
then pass to new coordinates by X* =5-'X. The equation (—A +Du =f
goes over to

4.1) (—A +6Hu* = §f*

Other relations change accordingly, with powers of & reflecting the degree of
homogeneity. Due to the parallel change in the norms of the spaces, the isomor-
phisms norms remain unchanged.

We shall continue to use J-norms in this section and the next one. Estimation
constants which are independent of & will be denotes by K. For instance

“2) |Djulls-1, £ K u]s,-

Indeed, this amounts to a norm estimate for F'lfj(62+!€|2)'1/2F, which is
geneous in (&,6).

Next we ask how the norm of a multiplication operator u — ¢(x)u in H™?
is effected by using a 6-norm for the space. The operator norm is denoted by
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||q$“’"’. If s =k, a nonnegative integer and § =1 then Suplalé,,SupID’dJ‘
is the obvious estimate. Changing coordinates by X* = 6-'X, we obtain for
o-norms

(4.3) 4| ** < K Sup Sup|s~"D%|

la| Sk
Ifk-1< |t] < k (then we set k =t* ), we can still use (4.3) as an estimate for
lo

Lemma 4.2. Let L=Xa,D’ be a differential operator of order m. Then as
an operator from H'*™? to H'? (or between similar W-spaces) its norm is
estimated by KZ,| a,|"*?. The norm of J,LJ;" is estimated by

K2 (a5 |+ Dsag[")
For J2LJ;* we have to add also ” Dfafj ”"" to the summation.

Proof. The assertion about L clearly follows from (4.2). The operators
J5LJ;" are pseudo-differential, with the same symbol as L and the assertions
follow from Calderon results [16]. We treat here the case r =2, which suffices
for later purposes. Now J7 = 6° + XD, and

JLI;E =L+ [JALY);
J;? followed by the commutator [JZ,L] is composed of terms
4.9) (D,a;D? — a,D*D3)J;* = [AD;a)D*IDJ;* +[(Dia)D’1I5?

Now J; 2 and D,J; ? have order 0 (i.e., map H™” to itself), their symbols being

standard I? multipliers, homogeneous in (&,8). The brackets in (4.4) are differ-

ential operators of order m at most with coefficients D;ag, Dfa‘,. Hence the result.
We turn now to boundary problems in a half sphere

S, = {t0|t20, |x)* + <r?}.

By 0S! we denote the flat part of 8S,, attaching + or — if we want the part in
inyz0or y£0.

4.5) A =(A,90B) or (A, Y_-yoJ 4, Yi70B)

is an abbreviation for a pure or a mixed boundary problem.
DEeFINITION.  An H? [local] fundamental solution (fs) [in Sr] for the mixed
problem Au = F =(f,¢_,¢,) is a bounded map

(4.6) E:IP(R™ Y xIT WOP(R3) —» HYP(RYY), o =s—1—1/p
such that
(%)) AEF = F [if Support Fc S,]
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(4.8) EAu = u [if Support ucS,], ueH® .

If s 2 2, we replace I” by H*™*" in (4.6) and drop the subscript A.

Thus E is a two-sided inverse of 4 [in the local case, when it is restricted to
functions supported in S,]. In the same way we define a [local] fs for a pure
problem.

In Sections 2 and 3 we have constructed global fs for canonical problems,
with A = — A +6%. We shall use in this section perturbation arguments to
obtain local fs in S, (r small) for general problems with smooth coefficients for
which the principal part of 4 at the origin is — A.

The coordinate transformation X — 6~ 'X maps S; onto S, . Existence of a fs
in S; for the original 4 is equivalent to the existence of a fs in S, for a transformed
problem in which (cf. [5, Th. 10.4.1])

4.9) A; = 8%A(6X,6-D) = (A +6%) + A
(4.10) B, = 6B(6X,6-'D) = B, +B!

where B° is the principal part of B of the origin. If ag, by, the coefficients of A
and B, are in C**1?! and a},b; are the coefficients of 4', B* then

(11 67"D%; = o> ), |a| <k +|B|, |B|>0; = 0(5%), B =0;
= 8" "lo(1), |a| =k +|B]
(4.12) §7¥D%; = 0(* M, |a| <k +|B|;
= §'"1Plo(1), |oc| =k+]ﬂ|.
Notice that in (4.9) we have adjoined §* to the principal part, but this does not
effect the validity of (4.11).

We now extend 4;,B;, defined by (4.9), (4.10) for |X|<1. Thus we set
A; = — A 4+ 6% and B; =B, for IX | = 2. Then we choose some smooth inter-
polation to extend the definition to 1 < [X | < 2. After the extension, the coef-
ficients of the perturbationiterms 4, B} still satisfy (4.11) and (4.12), which imply
by (4.3) and Lemma 4.2 that if k, the degree of smoothness of the coefficients,
is large enough then the operator norms of A} and B} (acting on H>P) tend to
0 with 6. If s increases, so should k, but for s < 3 it suffices to take k =1. Now
the problems associated with — A + 6% and B, are invertible (the mixed one if

(3.6) is satisfied) with operator norm idenpendent of §. Thus we proved part (a)
of the following

THEOREM 4.3(a). Let 2 <s and & sufficiently small. There exist H*? local
fs in Sy for the problems considered above (for the mixed one, (s,p) should
also satisfy (3.6)).

(b) The assertion in (a) is true for problems determined by J7*AJ? (instead
of A) and B. Only the smoothness conditions on A increase by 2.
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(c) The assertion in (b) implies the existence of an HgP local fs
in S;, 0 <5 <2, (for mixed problems, if (s, p) satisfies (3.6)).

Proof. For part (b), we change X to 6-1X as above. Then we have to con-
struct a fs in S, for

(4.13) Af = 822ABX, 07DV = — A+ 8% +J241;R

and B; of (4.10). We extend A} and B; to R}'! as in part (a). To estimate the
perturbation term in (4.13) we again use Lemma 4.2 and the estimate (4.11).

For part (c) we cannot use a straightforward perturbation argument since the
underlying spaces H3” change with 4 if s <2. Instead, we argue as follows.
Ay and A} are elliptic for small 6 and by parts (a), (b) their Dirichlet problems
are invertible in H*? s>2. Let G,;,G; denote the fs for the corresponding
modified Dirichlet problems. Let G;¢ = G40,¢), G5¢ = G;(0,¢). Obviously
G = J; %G, J2.

By Remark 2.6 y,J, and y,B; can be defined in H? for 0 £s <2 and the
MDP is invertible, i.e., G; exists. Moreover, for 6 — 0 the norms of (4;,7,) and
its inverse G, approach those of (—A + 8%, y,) and its inverse (as for s = 2). Hence
these norms are estimated independently of & for small . For any s =0 the
operator

(4.14) M;: ¢ —y,B;Gs¢ acts in WP(R"), ¢ =s5-1-1/p,

and gives the relation between the boundary data y,J .u and y,B,u for solutions
of T,Au =0. The corresponding operator for the unperturbed case (with
—A + 6% and B,) was given in (2.20), (2.21) and is denoted now by M,. It is
known to be invertible in W°? (with norm independent of §). We claim that

(4.15) The operator norm " M;—- M, """ tends to O with 6.

We have M; =7,B°G; +7,B'G;. In the second term G, and 7, have norm
independent of &, while the norm of B! tends to O as in part (a). Thus we may
assume B =B°. Then

o,p " (M6 B M0)¢"v,p " (Mﬁ - MO)":'/I "a,p
4.16 M,— M = § =8
(416 | M= Mol = Sup ==y 7 B
_ Sup 192705 = MVI3Y |12,
v o )eszs

Let M*=y,B°G¥ =J; %,B°G,J 2 =J; *M,J 2and thenM, — M§ =J; 3(M,— M)J3.
(4.16) gives its operators norm in W°*%? the smallness of which as 60 is
equivalent to the smallness in norm of J74'J;? acting on H***?. This last fact
was proved in part (b), in constructing a fs for problems associated with 4, (notice
that s +2 =2). Thusg(4.15) is proved.
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Cleary (4.15) implies that M, is invertible for small 8, hence there is a local
Jfs in HY? for the pure boundary problem (A4,y.B). Also (4.15) implies that
| # — M, |"® ~0, hence, for small §, M =(Y_,Y,M,) is invertible whenever
M, is. This proves the existence of a local fs for the mixed problem in case (s, p)
satisfy (3.6). This concludes the proof of Theorem 4.3. It is easily checked that
the smoothness condition—the coefficients a, and b, of A and B belong to
C!'*1Pl_is enough.

5. Regularity in the general case. In this section we establish regularity of
a weak solution of a general mixed problem. We consider:

I. A closed domain Q@ < R**! which is a C*-manifold with boundary 0Q.
A C? (n—1)-dimensional I" divides 6Q into 4Q~ and 0Q*.

. 4 =Ea,(X)D’, a second order elliptic operator with real coefficients
a,e C*H1Q).

L. B =Xby(X )D?, a first order operator with real coefficients which covers A
of each point of 3Q. Also by(x)e C**!PI(Q).

A function u € IP(Q) is a solution of the mixed problem u = F, F=(f,$,¥), if

CA)) Au =fin Q, you = ¢ on 0Q", y,Bu = on Q"

f is assumed to be in some (or all) I, p > 1. Then (cf. Remark 2.6) you, yoBu
are well defined and belong to W™ YP2(6Q) and W™~ 1PP(5Q) respectively.
We assume at least this much (but usually more smoothness) of ¢ and ¥ so that
(5.1) makes sense.

If u satisfies (5.1) only in a certain neighborhood of X, €T, we call it a local
solution. In this case, I-II-III need be satisfied only in that neighborhood. We
remark that (5.1) coincides with the customary notion of weak solution (or local
solution). Cf. (5.5).

We can perform (in steps) an invertible C2-transformation of coordinates
which will;

(a) Take a local solution defined near X, eI to a local solution of a mixed
problem in a half sphere S, (X, goes to the origin and I" us contained in y =0,
t =0).

(b) Get rid of the mixed terms D2 » 1=j=nin the operator A. This is
obtained by a transformation of the form t* =1, x* = x*(t,x) with x*(0,x) =x,
i.e., the transformation is the identity on the plane t =0. Cf. [2, page 90] for
details.

(¢) Get rid of the mixed terms Dyf, » 25j<n, on the plane ¢ =0. This is
done as in (b), but for the variables y,x,,-,x,. After this, we have in S,
Gy (6,y,x) =0(t), t—0. Here a,, is the coefficient of D}, in A.

(d) Set the principal part of A of the origin equal to —A. For this we divide
by minus a, and use an affine transformation on y,x,,--,x,. (Performing a
further rotation if necessary, we may assume the plane y =0 is preserved.)
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The boundary operator B in the transformed problem still covers the trans-
formed 4. The smoothness properties of the coefficients, the data and the so-
lution itself are clearly preserved by the coordinate transformation and its in-
verse. Hence it suffices to prove the regularity results for a local solution of a
mixed problem A = (A4, Y_y,J,, Y,9,B) in a half sphere S,, and we may assume
that (b), (c), (d) were done.

LeMMA 5.1. Let 1<q<4, fel, ¢, e W'%R") and let ue H'?, p<q,
be a local solution of Au = F =(f,¢_,¢.). Then actually ue H.

Proof. Here (and later) it suffices to prove the assertion in some S;. For
1 < p <4 we verify that (s, p) satisfies (3.6) for s in an interval around s =1.
Thus for some & there is a H*? fs in S;. Let { be a C® function which is 0 for
|X| 26 and 1 for | X| < 15. Then

(5.2 Alu = (Au + A'uel?

since A’ is a 1st order operator. The boundary data of {u are in W™ !/P?(R%)
(near the origin) as one easily verifies; hence, applying the fs E we get that in S,

|38

(5.3) {u = EA({u)e H®? for any s < % + .
The same is true for u in S,;. In particular we can choose s =1 +1/p <1/2 +2/p.
By the Sobolev (fractional) embedding theorem [9], we obtain ue H'?* with

pil=p" (1 - H—:_—l—) If p, > q we have finished. Otherwise we repeat the

m
process m times until p,' =p‘1(1 —E—}-_l) < g~ ! Then ue H"P~c H.
If the weak solution u is just in I? (instead of H'?) it is not evident that the
term A’y in (5.2) is in I?. To prove this is so, we need the following ‘‘partial
regularity’’ theorem, which will be validated later:

THEOREM 5.2. Let p>4, fel?, ¢, e W YPP(RY). Let ue? be a local
solution of Au = F. Then Duel?, j 2 2.

THEOREM 5.3. Let I, II and 111 be satisfied and let p>4. Assume feL,
GLeW VPPRYY and let ue HY, 1 <q<p or uel’®, py>4. Let u be a
1 2
local solution of Au =F. Then ue H*? for any s <3 +§.
Proof. If ue H'? then by Lemma 5.1 it is in H"** for any & > 0, hence in I°
for some p, > 4. Next we observe that it is enough to prove the theorem for

Po =p because if p, < p we first obtain u e H*?° and use the Sobolev theorem
to obtain ueI”, p, > p,. Repeating the argument several times we get ueL’.
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Now the choice of s and p ensures that (p,0) and (s, p) satisfy (2.6), and by
Theorem 4.3(c) there is a local fs in S;. Let {(X) =IT{(x;) where {(z) is a C*
function of one variable supported in z? < §*(n + 1)~ (so that {(X) is supported
in S;), and is 1 in z% < 6%(4(n +1))-*. We claim that A({u)eL®. The only
terms in doubt are a;;D,{D;u coming from the terms a,-jDij2 in A. For j = 2 they
are in I by Theorem 5.2. For i =j =0 Dy{ = D,{ vanishes near ¢t =0 and for
i =j=1 D,{ =Dy vanishes near y =0. However outside a neighborhood of
t=0, y=0 we know DueI’ by the (local) interior regularity or boundary
regularity for pure problems. In the mixed terms j =0 i 2 1 the coefficient a;o
vanishes because of the special form of A described in (b) above, while by (c)
a;; =0(t). Thus it suffices to know that tDue LP. This (and also *D,ueL)
follows quite easily from the a-priori estimates for the Dirichlet problem (one
multiplies 4 by a function Y which vanishes near ¢ =0 and estimates Yu).

COROLLARY 5.4. If uel®, ¢, W™ YPP(R") for all p then any local solu-
tion of a mixed problem which is in L, g > 4 is in Hélder class « for any a < 4.

Indeed it is in H'/*7 for any p, hence in C* by the Sobolev embedding theorem
(fractional form [9]).

We return now to Theorem 5.2. After subtracting a (smooth) solution of
a Dirichlet problem, we may assume Au =f, Y_you =0 Y, y,Bu =¢,. Let
(A*,y0,70B*) be the adjoint mixed problem. It is uniquely determined and I,
II, 111 are satisfied for it. Let V., be the class of smooth functions which vanish
outside S, and near its curved boundary, while on the flat part they satisfy homo-
geneous adjoint boundary conditions.

5.4) o0 =0 for y£0, yoB*v for y 2 0.

Using Green’s formula we obtain for ve V.,

(5.5) f uA*vdX = ff'vdX - [>0y0(Bu'v)dx

= (f,l)) - <Y+¢,')’OU>

where Y,¢e W™ YPP(R")and ¢ , ) is the duality between this space and WL~ 1/7"?',
(If Y_you = Y_y # 0 we get an additional term {Y_y/,y,B*v> on the right side
of (5.5), and this relation is the customary definition of a local weak solution.)
From (5.5) we get

(5.6) | (u, 4*v)|

IIA

" flo.s ” v "0.1:' +| ¢ ” - 1/p,p” Yol ” 1-1/p'p

K || v ||1,,,,, V€ Viirea-

A

The analogous inequality for Vpycne; implies u € H'?. This is proved in [1]
where it is first established that the derivatives DuelI”, j=1 [1, Lemma 5.2].
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The translation argument there carries over to our case for the derivatives
Dju, j = 2 (excluding the ¢ and y directions). Indeed the main tool there is the
local fs of the adjoint problem in the space H?*?'. [1, Lemma 4, 2]. Using the
condition (3.6) we see that H*? local fs for the mixed case exists of p’ < 4/3,
i.e., p>4. We notice that the proof referred to in [1] can be extended with a
minor change, t0 Vy,;xeq OT V5 (B a pure boundary condition) although the spaces
are not invariant under translations in the x; directions, but we omit the details.
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